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A Theoretical justification

We will require the following results:

Definition (Uniformly Lebesgue approximable function). Let g ∈ L1(E) for E ⊂ Rd.
g is uniformly Lebesgue approximable on E if, for any sequence Rn → 0 and any δ > 0,
∃n = n0(δ) ∈ Z+ (independent of x) such that if n > n0, then for almost all x ∈ E,

g(x)− δ <

∫
B(x,Rn)∩E g(t)dt

V(B(x,Rn) ∩ E)
< g(x) + δ,

where B(x,R) is the closed ball around point x ∈ Rd with radius R, and V(B(x,R)) is
the volume of the ball.

Lemma 1. [1]
Suppose that k ≥ 2 and thatM = supp(p). Assume that: (a) q is bounded above; (b)

p is bounded away from zero; (c) p is uniformly Lebesgue approximable; (d) ∃ δ0 such
that ∀δ ∈ (0, δ0)

∫
MH(x, p, δ, 1/2)p(x)dx <∞; (e)

∫
M ||x− y||

γp(y)dy <∞ for almost
all x ∈M,∫ ∫

M2 ||x− y||γp(y)p(x)dydx <∞, where

H(x, p, δ, ψ) =
∑k−1
j=0

(
1
j!

)ψ
Γ( 1

2 + jψ)
(
p(x)+δ
p(x)−δ

)jψ
(p(x)− δ)−( 1

2 ) ((1− δ)ψ)
−( 1

2 )−jψ .

Then

lim
n→∞

E
[(
D̂h (X1:N ||Y1:N )−Dh (p||q)

)2]
= 0. (1)

The proof of this results relies on constructing an integrable function as a bound
such that Lebesgue’s dominated convergence theorem can be applied. See Póczos and
Schneider [1] for details. Lemma 3 specifies L2 consistency of the nearest neighbour
estimator, which ensures that the estimates of the distance between p and q become
more concentrated around the true values as more samples are used.

Theorem 2. Assume E is finite, |E| = χ. Assume the conditions of Lemma 3 hold for
distributions p and q(w). Assume that a unique w∗ maximizes Dh

(
p||q(w)

)
and arrange

parameter values wj for j ∈ {1, . . . , χ} in order such that they are descending in
Dh

(
p||q(w)

)
. That is w1 = w∗, using w2 gives the next biggest value and so on. Then

lim
n→∞

P
(

argmax
w∈S

D̂h

(
X1:N ||Y (w)

1:N

)
= w∗

)
= 1. (2)

Proof. Let ε > 0. Take δ < Dh

(
p||q(w∗)

)
−Dh

(
p||q(w2)

)
. Using Lemma 3, we have L2

convergence for the estimator D̂h and, which therefore implies convergence in
probability. Therefore ∃M ∈ N such that ∀n ≥M

P
(∣∣∣D̂h

(
X1:N ||Y (w)

1:N

)
−Dh

(
p||q(w)

)∣∣∣ > δ
)
< ε.

Therefore ∀N ≥M

P
(

argmax
w∈E

D̂h

(
X1:N ||Y (w)

1:N

)
= w∗

)
> 1− ε.
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If we make the (generally unrealistic) assumption that the space of possible
parameters, E, is finite, then we are able to show that, in the limit of a large number of
samples, we can recover the optimum parameters with probability 1. We next explore
how this can be extended to a compact, continuous space of parameters, E, provided we
make assumptions about the structure of dependence of the distance estimator on
parameters w ∈ E. We show that assumptions about this dependence structure of the
estimator on the parameters can be justified by considering some of the details of
Algorithm 2.

Lemma 3. Consider the estimator of the Hellinger distance as a function of
parameters, w, such that

L(w) = D̂h

(
X1:N ||Y (w)

1:N

)
.

Then L(w) is piecewise constant with respect to parameters w ∈ E, with finitely many
discontinuities.

Proof. Suppose that, according to Algorithm 2, at generation t, we have generated
pseudo data {xi∗}Ni=1, which we summarize via summary statistics
s(xi∗) = (s1, . . . , sκ) ∈ Rκ and κ is the number of summary statistics used to
summarise the model output. The parameters w ∈ Rκ are summary statistic weights,
and these are used within a weighted Euclidean distance function

dw (s(x), s(y)) =

κ∑
j=1

w2
i (sj − sj(y))2

= (s(x)− s(y))>Σ>wΣw(s(x)− s(y))

= (Σws(x)− Σws(y))
>

(Σws(x)− Σws(y)) ,

where Σw = diag(w), to compare the pseudo data with observed data. We note that
this is equivalent to stretching the space in which the pseudo data lies via the matrix
Σw, and using the usual Euclidean distance.

Consider a small perturbation in parameter space w = w0 + ε, with ||ε|| � 1. Then

Σw = diag(w0 + ε) = diag(w0) + diag(ε) = Σw0
+ Σε.

Using this decomposition of Σw gives, for the weighted Euclidean distance,

dw0+ε(s(x), s(y)) = ((Σw0
+ Σε) s(x)− (Σw0

+ Σε) s(y))
>

((Σw0
+ Σε) s(x)− (Σw0

+ Σε) s(y))

= (Σw0s(x)− Σw0s(y))
>

(Σw0s(x)− Σw0s(y))

+ (Σεs(x)− Σεs(y))
>

(Σw0
s(x)− Σw0

s(y))

+ (Σw0s(x)− Σw0s(y))
>

(Σεs(x)− Σεy) +O(ε2)

= dw0
(s(x), s(y)) +A+A> +O(ε2),

where A = (Σw0
s(x)− Σw0

s(y))
>

(Σεs(x)− Σεs(y)) which is linear in ε. Suppose we
order the pseudo-data such that xj∗ is the jth closest point to the observed data based
on dw0 . Provided that

dw0
(s(xn∗), s(y))− dw0

(s(x(n+1)∗), s(y)) > A+A> +O(ε2), (3)

then making this perturbation in w will not change which parameter samples are
selected, as the same pseudo data will remain closest to the observed data, y. If the
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same parameter samples are selected, then the value of L(w) will remain constant as a
function of w under the perturbation w = w0 + ε.

In cases where eq. (3) does not hold, there will be a jump discontinuity in L(w) as
different parameter samples are selected. This will occur finitely many times
corresponding to the finite number, N , of points in the sample of pseudo data,
{xi∗}Ni=1.

We confirm computationally that L(w) is piecewise constant for the test problem
described in Section 4.1, and show this in Figure S1.

0 500 1000
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0.767

Fig S1. The estimator L(w) = D̂h

(
X1:N ||Y (w)

1:N

)
is piecewise constant for the toy

model described in Section 4.1 when X1:N are samples from the prior and Y
(w)
1:N are

samples from the approximate posterior generated via ABC with summary statistics
weights w. After a single generation of ABC-SMC, we optimize L(w) as a function of w
to find a local maximum w∗. In (a), we then consider the value of L(w) on a line of
parameters in parameter space w = w∗ + 10−4r~η, where ~η ∼ N (0, Iκ) is a random
choice of direction, Iκ is the κ× κ identity matrix and r parameterizes a line in this
direction. L(w) is piecewise constant in w as shown in Lemma 3. For a piecewise
constant function L(w), we can choose δ and wj for j ∈ {1, . . . , κ} such that L(w) is
locally constant. We illustrate such a choice of δ and wj in (b).

Lemma 4. Assume E ⊂ Rκ is compact and that a unique w∗ ∈ E maximizes
Dh

(
p||q(w)

)
. Assume the conditions of Lemma 3 hold for distributions p and q(w).

Suppose L(w) is piecewise constant in w with finitely many jump discontinuities. Then

lim
n→∞

P
(

argmax
w∈E

D̂h

(
X1:n||Y (w)

1:n

)
= w∗

)
= 1.

Proof. We can choose a δ > 0 and finitely many wj , j ∈ {1, . . . , χ} such that every
point w is within a ball of radius δ from some wj (see Figure S1 and note that L is
locally constant). Then ∀w ∈ E ||w −wj || < δ =⇒ L(w) = L(wj) = Lj . Since there
are finitely many values wj corresponding to distinct unique values Lj , we can apply
the result from Theorem 5 to give the required result.

Theorem 5. Suppose that k ≥ 2 and thatM = supp(p). Assume that:
(a) q is bounded above;
(b) p is bounded away from zero;
(c) p is uniformly Lebesgue approximable;
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(d) ∃ δ0 such that ∀δ ∈ (0, δ0)∫
M
H(x, p, δ, 1/2)p(x)dx <∞;

(e)
∫
M ||x− y||

γp(y)dy <∞ for almost all x ∈M,∫ ∫
M2 ||x− y||γp(y)p(x)dydx <∞;

(f) E ⊂ Rκ is compact;
(g) a unique w∗ ∈ E maximizes Dh

(
p||q(w)

)
.

Then

lim
n→∞

P
(

argmax
w∈E

D̂h

(
X1:N ||Y (w)

1:N

)
= w∗

)
= 1. (4)

Proof. Apply the Lemma 4 to show that L(w) is piecewise constant in w. Apply
Lemma 5 to give the desired result.

Theorem 6. [2]
Suppose that the following conditions hold:
(a) θ ∈ Rλ, s(x) ⊂ Rκ and these random variables have joint density π(θ, s(x)) with

respect to the Lebesgue measure;
(b) the sets At = {s(x) | dw∗

t
(s(x), s(y)) < εt} are Lebesgue measureable, where w∗

are the optimal weights at generation t, and εt are the tolerances at each generation;
(c) π(s(y)) > 0;
(d) limt→∞m(At) = 0, where m(·) represents Lebesgue measure;
(e) the sets At have bounded eccentricity. That is for any At, ∃ a ball

Bt = {s(x) | ||s(x− s(y)||2 ≤ rt} about s(y) with radius rt such that At ⊂ Bt and
m(At) ≥ cm(Bt), where || · || is the Euclidean or L2 norm and c > 0 is a constant.
(This property implies that At is contained within a ball Bt, but that its measure is
comparable to the measure of the ball [4]).

Then the posterior approximations converge:

lim
t→∞

pABC,t(θ|s(y)) = p(θ|s(y)) for almost all (θ, s(y)),

where pABC,t(θ|s(y)) is the ABC posterior defined as

pABC,t(θ|s(y)) ∝
∫
p(s|θ)π(θ)1[dw∗

t
(s(x), s(y)) ≤ εt] dx.

Proof.

lim
t→∞

pABC,t(θ|s(y)) = lim
t→∞

∫
p(θ, s)1[s ∈ At] ds∫
p(θ, s)1[s ∈ At] dsdθ

= lim
t→∞

∫
s∈At

p(θ, s) ds∫
s∈At

p(θ, s) dsdθ

=
limt→∞

1
m(At)

∫
s∈At

p(θ, s) ds

limt→∞
1

m(At)

∫
s∈At

p(s) ds

=
p(θ, s(y))

p(s(y))
almost everywhere

= p(θ|s(y)).

The fourth equality above is due to the Lebesgue differentiation theorem [4], which
requires bounded eccentricity and limt→∞m(At) = 0.
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B Further examples

We provide here further examples to demonstrate behaviour of the adaptive ABC-SMC
method presented in Algorithm 2.

B.1 Gaussian toy model

Suppose we aim to infer a single parameter, θ. We observe two summary statistics
s(x) = (x1, x2), where x1 ∼ N (θ, 0.12) and x2 ∼ N (0, 12) such that the first summary
statistic is informative and the second is uninformative. We take a broad prior
distribution of N (0, 1002) for θ. The effect of this is that by choosing weights for
summary statistics based on the prior predictive distribution, the weight for the
informative summary statistic, x1, is smaller than for the uninformative statistic, x2.
This toy model was used previously by Prangle [2] to demonstrate their weight adaption
method, by comparison with fixed weights based on summary statistics simulated from
the prior predictive distribution. The method from Algorithm 2 improves on this
method, as shown in Figure S2, by reaching faster adaption to the scales of the
summary statistics, combined with how informative they are. In addition, in Figure S2
we show the scaling of the MSE as the number of simulations increases. Here there are
two summary statistics on similar scales, so weighting these equally is a sensible choice.
The adaptive method of Algorithm 2 matches the scaling of MSE of the uniform choice
of weights, improving upon the scaled method.

B.2 Death process

For our first test problem, we consider estimating the rate parameter for a single, first
order degradation reaction:

A
k1−−→ ∅. (5)

We will consider for this, and subsequent, test problems that time has been
non-dimensionalized. Initially, we assume there are A(0) = 10 particles in the system,
which is observed over a (non-dimensional) time period [0, 20]. We assume it is possible
to measure the state of the system (in this case the number of molecules of species A)
without observation noise at given time points t0, t1, . . . , tn. For this test problem, we
assume that we measure at n equally spaced time intervals, where n = 8.

As our summary statistics, we take s(x) = [A(t0), A(t1), . . . , A(tn), z] where z is an
observation of a random variable Z ∼ N (0, σ2) that is uncorrelated with the death
process. We suppose that the scale of the variance, σ, is different to the scale of the
observations of the exponential decay process, giving a simple system with a
two-dimensional parameter to infer: θ = (k1, σ). Note that the scale of z is determined
by the standard deviation, σ, but the scale of the death process is affected by the initial
condition, A(0) = 10, resulting in two distinct scales in these summary statistics.

Results of parameter inference for this system using ABC-SMC are shown in Figure
S3, where the true parameters used are θ = (0.1, 0.01) and a prior uniform on the
logarithm of each of the parameters over the interval [10−3, 103] was used. We observe
similar performance in identification of the decay parameter k1 using uniform weights,
scaled weights and the adaptive choice of weights. Scaling the summary statistics with
the MAD results in problems here since some summary statistics may not vary much
upon simulation from the prior predictive distribution initially, resulting in σi = 0 for
the corresponding summary statistic. To solve this, we set the weight for a given
summary statistic to a large fixed value if the MAD for that summary statistic was
below a small threshold value. Note that only one summary statistic provides
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Test κ A(0) T θ∗ N α Repeats Prior
problem interval
Uniform toy 10 - - 10 2000 0.5 1 log10 θ ∼ U [−4, 4]
model
Bimodal toy 2 - - (π/4, 5π/4) 2000 0.5 1 θ ∼ U [0, 2π]
model
Gaussian toy 2 - - (0,0) 2000 0.5 1 θ ∼ N(0, 100)
model
Death 9 10 20 (0.1, 0.01) 2000 0.5 1 log10 θ ∼ U [−4, 4]
process
Dimerization 24 (105, 0, 0) 100 (1, 0.04, 2000 0.5 1 log10 θ ∼ U([−2, 2]× [−3, 1]

0.002, 0.5) ×[−5,−1]× [−3, 1])
Diffusion 64 10 ∗ 1x<0 20 0.1 2000 0.5 1 log10 θ ∼ U [−4, 0]

Table S1. Summary of hyperparameters used in simulations.

information about the random variable Z, whereas the other n+ 1 summary statistics
(which are observations of the decay process at time points {ti}ni=0) provide information
about the decay of species A. The summary statistic weights chosen via the search
process outlined in Algorithm 2 give rise to a posterior that outperforms the posteriors
generated using uniform weights and scaled weights for the second parameter σ, since
only a single summary statistic provides relevant information for this parameter.

C Robustness to a diffuse prior

We demonstrate robustness the our method to changes in the variance of the prior
distribution, including the case of a very diffuse prior distribution. We use a version of
the Gaussian test problem, with a prior N(0, 10j) for j = 0, 1, 2, 3. We have two
summary statistics: an informative statistic, N(θ, 0.12); and an uninformative statistic,
N(0, 1002). Even as the variance of the prior distribution increases, the adaptive method
of Algorithm 2 remains robust, and provides a closer approximation to the posterior
than the uniform weights, which are hindered by the uninformative summary statistic.

D Tolerance schedule

In Algorithm 2, we make use of the quantile α of the distribution of distances from the
ABC distance function to help determine the schedule of tolerances, εt. We consider
here the effect of using a fixed tolerance scheme determined in advance, versus the
adaptive tolerance scheme based on the quantiles, α. Results are shown in Figure S5 for
the uniform toy model of Section 4.1 indicating that Algorithm 2 is robust to different
choices of tolerance scheme, including a fixed tolerance scheme determined in advance.
However, we recommend in practice using a tolerance determined as a quantile α of the
distance distribution, as this avoids the need to set a fixed tolerance schedule in advance
when the scale of typical distances between observed and simulated data is not known
in advance. A fixed tolerance scheme prevents easy comparison between uniform, scaled
and adaptive weighting methods for the weights of the ABC distance function, as
different numbers of model simulations are required in each case, depending on the
tolerance schedule. By using the quantile α of the distribution of distances, we ensure
that an equal number of model simulations are used in each case. Methods to design
tolerance schedules have been investigated by Silk et al. [3] based on a
threshold-acceptance rate curve and could be considered as an alternative.
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Fig S2. Posterior for parameters θ of the Gaussian toy model for different weights in
the ABC distance function. ABC-SMC was used to provide estimates of the posterior,
with five generations and N = 2, 000 simulations at each generation with the posterior
constructed from the closest 50% of the simulations (α = 0.5). Metrics to evaluate the
performance of Algorithm 2 are shown in (b), (c), and (d) as N varies resulting in
different total numbers of simulations from the model. Results are averaged over 40
repeated runs. In (b), is shown the Hellinger distance from the prior to approximate
posterior distribution, which is maximized directly within Algorithm 2. In (c), the
Hellinger distance from the approximate posterior to the exact posterior distribution (as
sampled via MCMC) is shown. A lower value of this distance indicates a better
approximation to the posterior. In (d), the MSE from the approximate posterior mean
to the exact posterior mean is shown. The orange, yellow and light purple lines show the
scaled, uniform and adaptive methods, respectively. For comparison as a gold standard
for this problem, the dark purple line shows the posterior obtained with MCMC using
the exact likelihood without any ABC approximation. The true parameter value used to
simulate the observed data is indicated by the vertical dashed black line.
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Fig S3. Posteriors for parameters k1 and σ in the death process test problem for
different weights in the ABC distance function. ABC-SMC was used to provide
estimates of the posterior, with five generations and N = 2000 simulations at each
generation with the posterior constructed from the closest 50% of the simulations
(α = 0.5). (a) shows typical output from the model for the true parameters. The
posteriors for k1 are given in (b) and for σ in (c). The orange, yellow and light purple
lines show the scaled, uniform and adaptive method,s respectively. For comparison as a
gold standard for this problem, the dark purple line shows the posterior obtained with
MCMC using the exact likelihood without any ABC approximation. The true parameter
value used to simulate the observed data is indicated by the vertical dashed black line.
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Fig S4. Increasing the variance of the prior distribution for a version of the Gaussian
test problem shows the method of Algorithm 2 is robust to a broadly spread prior
distribution. A prior N(0, 10j) for j = 0, 1, 2, 3 is assumed. Two summary statistics are
used: an informative statistic, N(θ, 0.12); and an uninformative statistic, N(0, 1002).
Results shown are approximate posterior distributions after 10 generations of
ABC-SMC. The yellow and light purple lines show the uniform and adaptive methods,
respectively. For comparison as a gold standard for this problem, the dark purple line
shows the posterior obtained with MCMC using the exact likelihood without any ABC
approximation. The true parameter value used to simulate the observed data is
indicated by the vertical dashed black line. In all plots, the light purple and dark purple
lines are overlapping showing the adaptive method provides a close approximation to
the exact posterior distribution.
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Fig S5. Comparison of an adaptive tolerance schedule (a) based on a quantile of the
distribution of distances from the ABC distance function, and a fixed tolerance schedule
(b). Similar results are obtained for the posterior distributions in each case indicating
robustness to different tolerance schedules. The uniform toy model of Section 4.1 is used
with parameters as in Figure 1 and the same dataset for both (a) and (b). The
tolerance schedule used is [∞, 108, 5× 107, 2× 107, 107] for the adaptive method of
Algorithm 2 over five generations. For other weighting methods, the schedule
[∞, 100, 50, 20, 10] is used instead. Direct comparison between methods based on these
results will not offer a fair comparison as the number of simulations drawn will vary
between methods. The orange, yellow and light purple lines show the scaled, uniform
and adaptive methods, respectively. For comparison as a gold standard for this problem,
the dark purple line shows the posterior obtained with MCMC using the exact
likelihood without any ABC approximation. The true parameter value used to simulate
the observed data is indicated by the vertical dashed black line.

July 23, 2020 12/12


	Theoretical justification
	Further examples
	Gaussian toy model
	Death process

	Robustness to a diffuse prior
	Tolerance schedule

